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Abstract - The aim of the paper is to study the phenomena of stability of a hollow tube subjected to combined deformations. The model used is that of 

Blatz-Ko in compressible and dynamic. Before studying the stability, we have solved a boundary value problem w ith exact solution. The results could be 

applied in biomechanics. 
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1. INTRODUCTION 

For the mathematical description of many mechanical or 

physical problems, it is often necessary to solve equations 

or systems of differential equations, to search for periodic 

or stationary solutions to study their stability properties. 

The first results of the stability theory of nonlinear 

equations with Lyapunov appeared in the late 19 th century 

and early 20th century. He then gives a sufficient condition 

for stability of nonlinear systems. Chataev, meanwhile, will 

show a theorem of instability. Massera demonstrates a 

necessary and sufficient condition for stability. Hahn and 

Lefschetz will contribute to this theory [1] 

Subsequently, many theories on stability have been 

developed. 

 The first step in the qualitative theory of autonomous 

differential equations is an analysis of fixed points and their 

stability. This leads on naturally to a study of how the 

behavior near such fixed points can change as a parameter 

is varied [2]. 

There may be some parameters for which the system 

behavior changes from one qualitative state to another (the 

attractor of the system was a state of equilibrium and 

becomes a cycle for example [3,4,5]. 

 In this work, we use non-autonomous differential 

equations. Initially, we are concerned with axisymmetric 

finite axial shear deformation of an isotropic compressible 

dynamic nonlinear elastic hollow circular cylinder. 

Studies on the stability of such structures have been 

developed. For example the buckling and postbuckling of 

cylindrical shells under combined loading of external 

pressure and axial compression are demonstrated [6].  The 

instability analysis of a circular and thick cylinder under 

hydrostatic pressure is also studied [7]. 

The stabilization of the functionally graded cylindrical shell 

under axial harmonic loading is investigated by Ng and al. 

[8]. The authors such as Roxburgh and Ogden [9], Vandyke 

and Wineman [10] studied the vibrations and stability of 

finite deformed compressible materials. 

The aim of this paper is firstly looking for an exact solution 

of the problem of radial deformation and axial shear and 

also the study of the stability of the solution. 

 

 For finding the exact solution, the purpose of the present 

paper is to further examine this issue for compressible 

materials as the solid Blatz-Ko material. We restrict the 

domain geometry to be that of a circular cylinder. 

 For a circular cylinder composed of an arbitrary isotropic 

incompressible elastic material, an exact solution to the 

axial shear problem given rise to axisymmetric anti-plane 

shear deformation has been obtained by Adkins [11]. 

Less than in the case of incompressible materials, exact 

solutions were obtained for compressible materials in the 

static case such as the finite torsion and shearing of a 

compressible and anisotropic tube [12] or dynamic  as is the 

case, for example of the finite azimuthal shear motions of a 

transversely isotropic compressible elastic and prestressed 

tube [13].  To study stability, we use the technique of 

perturbation [14]. 

The question one might ask is whether we perturb a system 

of differential equations, the solutions obtained do they 

change much? 

If the solutions of the perturbed system are all close to the 
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solutions of the system starting, we talk about stability. 

When some disturbances create new solutions, instead of 

starting solutions, we will talk of instability. We've taken 

the advantage of not giving a general definition of stability 

for nonlinear differential equations, in order to allow the 

concept of stability its multifaceted character. 

2. Formulation 

 
Rubber or other polymer materials are said to be 

hyperelastic [15]. Usually, these kind of marterials undergo 

large deformations. In order to describe the geometrical 

transformation problems, the deformation gradient tensor 

is introduced by 

 

),(grad uIF     (2.1) 

 

where I is the unity tensor and u the displacement vector. 

Because of large displacements, Green-Lagrangian strain is 

adopted for the nonlinear relationships between strains and 

displacements [15]. We note the right and left Cauchy-

Green deformation tensor respectively by 

FFC
T and T

FFB  . The Green-Lagrangian strain 

tensor E is defined by 

 

,2/)( I CE      (2.2) 

 

We are concerned with axisymmetric finite radial 

deformation and axial shear of an isotropic compressible 

nonlinear elastic hollow circular cylinder. Thus the 

deformation, which takes the point with cylindrical polar 

coordinates  ZR ,, in the undeformed region to the 

point  zr ,,  in the deformed region, has the form 

 
),(,),,( tRhZztRrr     (2.3) 

 

Where ),( tRr  and ),( tRh  are unknown functions to 

determine and represent respectively the radial 

deformation and axial shear.                                                                                                              

With respect to the cylindrical polar coordinates system, the 

physical components of the deformation gradient tensor is 

given by 
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The Cauchy-Green tensors FFC
T and T

FFB  are given by 
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where ./ RXX   

In the case of hyperelastic law, there exists a strain energy 

density functionW which is a scale function of one of the 

strain tensors, whose derivative with respect to a strain 

component determines the corresponding stress 

component. This be expressed by the second Piola-Kirchoff 

stress tensor 

 

E
S






W
   (2.7) 

This gives in the cas of isotropic hyperelasticity [16] 
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where      ),det(,2/tr)(tr),(tr 3

22

21 CCCC  JIII  

denote the invariants ofC and .B  

In this study, we use a Blatz-Ko material. For a solid Blatz-

Ko material, undergoing a deformation characterized by a 

deformation gradient F , the strain-energy functionW is 

given by [17] 
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where  and  are constants.                                                                                                     

The blatz-Ko models for polyurethane rubber have been 

extensively used to describe the behavior of compressible 

hyperelastic isotropic material undergoing deformation [18].    

By deriving the energy density (2.9) with respect to the three 

invariants
321 ,, III , and reporting the result in (2.8), we obtain 









 ICS

2

112 J    (2.10) 

Taking into account the kinematics (2.3) and definitions of 

the invariants of ,C we get: 
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(2.11) 

The Cauchy stress tensor σ is calculated from the second 

Piola-Kirchoff stress tensor S  as follows: 

T1
FSFσ

J
    (2.12) 

which allows for taking into (2.9) and (2.10), as follows from 

σ  

,10 B1σ          (2.13) 

The elastic response functions )1,0(),,( 31  sIIss  are given 

by [19] 
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   (2.14) 

where ),3,1(,/  iIWW ii and we set 2 in (2.9). 

Substituting (2.5), (2.9) and (2.14) in (2.13), we obtain the 

components of Cauchy stress tensor 
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  (2.15) 

The motion equations in the absence of body forces are 

,/)(div 0 Jaσ    (2.16) 

wherea  is the acceleration and
0 the mass density in the 

reference state. Equations (2.16), for the deformation (2.3), 

reduce to the following two equations: 
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  (2.17.b) 

To solve the system (2.17), we propose forms of ),( tRr  

and ),( tRh below [12, 13] 

).()cos()(),(

),()cos()(),(

21
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RhwtRhtRh

RfwtRftRr




  (2.18) 

where )(),(),( 121 RhRfRf and )(2 Rh are unknowns functions to 

determine. 

Substituting equations (2.18) in those of (2.17), we obtain a 

system of four equations decoupled 

,0)(
1

)(
1

)( 1
2

2

11















 Rf

R

mRf
R

Rf  (2.19.a) 



International Journal of Scientific & Engineering Research Volume 3, Issue 2, February 2012                                                                   4 

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org 

 

 

 

,0)(
1

)(
1

)( 2222
 Rf

R
Rf

R
Rf  (2.19.b) 

,0)()(
1

)( 1

2

11  RhmRh
R

Rh  (2.19.c) 

.0)(
1

)( 22  Rh
R

Rh  (2.19.d) 

where ./2
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The boundary conditions are 
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  (2.20) 

where
iR and

oR denote the inner and outer radii in the 

undeformed configuration. 

 

3. Resolution 

Seeking the exact solutions of nonlinear partial differential 

equation play an important role in the nonlinear problems 

[20]. This is the case of Bessel type equations encountered in 

many mechanical problems, particularly those with 

cylindrical symmetry. 

Equation (2.19.a) is a Bessel equation whose solution is: 

 
),()()( 11101 RmYRmJRf    (3.1) 

where
0  and

1 are constants of integration determined from 

the boundary conditions (2.15), and )(),( 11 xYxJ of Bessel 

functions of first order, respectively first and second kind 

defined by 
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where
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n

n
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  [21] is the logarithmic derivative of the 

gamma function. 

The solution of the equation (2.19.b) is given by 
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   (3.3) 

The solutions of equations (2.19.c) and (2.19.d) are 

respectively 
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  are defined on the same 

interval ].,[ oi RRI  The series 0
)(

n
n xf converges normally 

on the interval I [22]. 

 

Moreover, the functions )(xfn
 are differentiable on I and the 

series of function 
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on .I  It follows that 0
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n xf is differentiable on I  and we 

get    
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This is what gives meaning to the last equation of boundary 

conditions (2.20). 

The Cauchy-Lipchitz theorem [23] applied to the system 

consisting of (2.17) (2.19) and (2.20) ensures the existence and 

uniqueness of solutions (3.1) (3.3) (3.4) and (3.5). 

Thus, the deformation defined in (2.3) for  ,,0),(  ItR  is 

given by: 
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Using the Cauchy-Lipchitz theorem, we can define the 

concept of maximal solution, i.e. solutions defined on an 

open interval   ,0IOI  which can not be extended to 

solutions over a range greater than .OI   

 

4. Stability 
This section is devoted to the concept of stability for the 

equations (2.17) and their solutions. This is a first step to 

disrupt the equations [14] to find new solutions, relatives or 

not starting solutions. This will serve as a basis for discussion 

on the stability or instability of certain solution [24, 25]. 

However, we took advantage of not giving a general 

definition of stability, to allow his character to this 

multifaceted concept. 
To find the evolution of the fluctuations around solutions 

(3.6), we apply the techniques of disruptions by asking 
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where ),(),,( tRhtRr are the solutions defined en (3.6),   is a 

small parameter quantifying the magnitude of disturbance 

and ),(),,( tRHtRF  are unknown function to determine. 

We set as a new kinematics 
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In this new kinematics, we will note the gradient of 

deformation tensor 
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The perturbed equation of motion is given by 

 

,/)(div 0   Jaσ   (4.3) 

where a is the acceleration due to the kinematics (4.1). 

 
By neglecting all quadratic terms (in 2, nn ), 

in ),,,(, zrslsl   , the equations of motion (4.2) become of the 

form ,,0   BA which gives .0,0  BA  

The equations of motion (4.3) will then reduce to: 
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Methods for determine of periodic solutions have been 

significantly improved thanks largely to the work of M. 

Poincare. We can not be said, it seem, more general 

trigonometric solutions. There is no universal method to find 

such solutions. We must therefore resolve to restrict our field 

of study. Thus in this section, on the hand we want to prove 

the existence of a solution and also generalize the results 

obtained in (3.6). Therefore as an example of resolution, we 
propose for the functions ),( tRF

and ),( tRH
of the following: 
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where )(),(),( 121 RHRFRF 
and )(2 RH

are unknowns functions 
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Equations (4.6.a), (4.6.b), (4.6.c) and (4.6.d) correspond to 

equations (2.19.a), (2.19.b), (2.19.c) and (2.19. d), respectively. 

We deduce then the solutions (4.6): 
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The solution of the perturbed problem, taking account of (4.1) 

and (4.7) is given by 
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5. Discussion 

We propose in this paragraph, to discuss the radial 

deformation. Provided that the same discussion and the same 

remarks can be applied to axial shear. 

Periodic solutions (3.6) and (4.8) are time-dependent. For 

time periodic solutions, there is a minimum time interval 

0T (the period) after which the system returns to its 

original state. 

The solution ),( tRr as defined in (4.8) is a continuous function 

in ),( tR . The convergence of the 

series )(1 mRJ , )(1 mRY and )(mRJO
can show that the 

function ),( tRr is L -Lipchitz in the variable :R there exists a 

constant L such that: 

 .,,,),(),( oibababa RRRRRRLtRrtRr  
, (5.1) 

 

The fact that ),( tRr  is L -Lipchitz, gives a condition of 

stability or instability with respect to perturbation. We can 
find a constant

0L as 

  .0,,,

)()cos()(),(),( 012





tRRR
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  (5.2) 

 

This inequality and the Cauchy-Lipchitz theorem [26, 27] 

show that the boundary problem (4.6) is well posed; ensure 

the uniqueness of the solution. In general, we can say that a 

solution to a problem is stable if it is insensitive to variations 

in data. We can interpret the sensitivity of the solution by the 
constant .0L   

This sensitivity allows us to discuss the phenomena of 

stability. We will say that there are phenomena of instability 
when the constant

0L is high and stability when it is small.         

Note that when tends to zero, the solution (4.8) tends to the 

solution (3.6), i.e.to a lack of disturbance. 

  
For the simulation, we use the numerical values of the hollow 

cylindrical tube: ;5,3,3 0 mmRmmRi  and 2w  [13]. 

In the following figure, we present the sensitivity of the 

solution to perturbations. 
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In view of the value of
0L , we can estimate a relatively low 

instability of the solution (3.6). 

Note that the stability constant is proportional to disturbance. 

But it should be noted is that this constant is independent of 

time. 

We answered questions about the well posedness of 

boundary value problems. 

Note that the magnitude of R increases with the disturbance. 

We also note that even it is relatively small; the disturbance is 

a significant influence on the system.  

As an application of this study, we think of a structure or 

prototype arterial disturbed by a disease such as an 

atherosclerotic plaque. 

However, we noted that the stability constant is not 

informative to understand what happens over long times.  It 

should also be noted that in this approach, all quadratic 

terms in )2,(, nn  are neglected. 

REFERENCES 

[1] W. Hahn, Theory and Application of liapunov’s Direct 

Method. Prentice-Hall inc., 1963.N.J.  

[2] P.A.Glendinning, Stability, instability and chaos:    an 

introduction to the theory of nonlinear  

 differential equations, Cambridge Texts in Applied 

Mathematics, CUP 1994.  

[3] J.K.Hale, Asymptotic Behavior of Dissipative Systems,  

Providence: Math. Surveys and  

 Monographs, Amer. Math.Soc.1988. 

[4] R. Temam. Infinite-Dimensional Dynamical Systems in 

Mechanics and Physics, Springer-Verlag, New-York 

1988 (1st edition) and 1996 (2nd edition). 

[5] D.Henry, Geometric theory of Semilinear Parabolic 

Equation, Springer Lecture Notes in  

 Mathematics, Vol.840, Springer Verlag, Berlin 1984. 

[6] H.S.Shen, T.Y.Chen, Buckling and postbuckling behavior 

of cylindrical shells under combined  

 pressure and axial compression, Thin-Walled Struct. 12 

(1991) 321-334. 

[7] M.Barush,J.Singer, Effet of eccentricity of stiffners on the 

general instability of stiffened  

 cylindrical shells under hydrostatic pressure, J. Mech. Eng. 

Sci. 5 (1963) 23-27.  

[8] T.Y.Ng, Y.K.Lam, K.M.liew, J.N.Reddy, Dynamic 

stability analysis of functionally grated  

 Cylindrical shells under periodic axial loading, Int.J. Solids 

Struct. 38 (2001) 1295-1300. 

[9] D. G. Roxburgh and R. W. Ogden. Stability and 

vibration of pre- stressed compressible elastic  

 plates. International Journal of Engineering Science, 

32(3):427-454, 1994. 

[10] T.J.Vandyke,A.S.Wineman, Small amplitude sinusoidal 

disturbances superimposed on finite 

 circular shear of a compressible, non-linearly elastic 

material, Int. J. Ing. Sci.,34 (1996)  

 1197-1210   

[11] J.E.Adkins, Some generalizations of the shear problem for 

isotropic incompressible materials,  

 Proc. Cambridg Philos. Soc. 50, 334-345 (1954). 

[12] M.Zidi,Finite torsion and shearing of a compressible and 

anisotropic tube, Int. Journal of  

 Non linear Mechanics, 35:1115-1126 (2000). 

[13] E.Diouf,M.Zidi, Finite azimuthal shear motions of a 

transversely isotropic compressible elastic  

 And pretressed tube, Int. J. Ing. Sci., 43 :262-274 (2005). 

[14] Jouve F.,Modélisation de l’oeil en élasticité non linèaire,  

Masson, Paris, 1993. 



International Journal of Scientific & Engineering Research Volume 3, Issue 2, February 2012                                                                   8 

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org 

 

 

 

[15] Zhi-Qiang Feng, B. Magnain, J. Cros, Solution of large 

deformation impact problems with  

 friction between Blatz-Ko hyperelastic bodies. Int. J. Ing. 

Sci. 44 (2006) 113-126. 

[16] P.G. Ciarlet,Elasticité tridimensionnelle, Masson, 

Collection, RMA, 1985. 

[17] M. Destrade,G.Saccomandi,On finite amplitude elastic 

waves propagating in compressible  

 solids.(2005) Physical Review E. 

[18] M.Destrade,Finite-Amplitude inhomogeneous plane waves 

in a deformed Blatz-Ko Materal, 

 CanCNSM, Victoria, June 16-20, 1999. 

[19] A.D. Polignone, C.O. Horgan, Axisymmetric finite anti-

plane shear of compressible nonlinealy 

 elastic circular tubes.Quarterly of applied mathematics, 

Vol.L, N.2, june 1992, Pages 323-341. 

[20] C.Truesdell, W.Noll, The non-linear field theories of 

mechanics, Handbuch der Physik, III/3 

 (S.Flugge, ed.), Springer-Verlag, Berlin, 1965. 

[21] F.Laroche,Promenade Mathématiques, Fonctions de Bessel, 

promenadesmaths.free.fr, 2004. 

[22] C. Deschamps, A. Warusfel,Mathématiques Tout-en-un. 

2ième année MP,  

 2ième edition Dunod, 2004.  

[23] A.M. Stuart, A.R.Humphries,Dynamical systems and 

numerical analysis,Cambridge University  

 Press, 1998.          

[24] E.Hebey,Nonlinear elliptic equations of   critical Sobolev 

growth from a dynamical viewpoint  

 Noncompact problems at the inter-section of 

geometry, analysis, and topology, Contemp.  

 Math., vol. 350, Amer. Math.Soc., Providence, RI, 

2004,p.115-125. 

[25] O.Druet, E.Hebey, J. Vétois, Boundary stability for 

strongly coupled critical elliptic systems below the 

geometyric threshold of the conformal Laplacien,J. Funct. 

Anal. 258 (2010), No.3,p. 999-1059. 

[26] T.Kato, Pertubation theory for linear operator,Classic in 

Mathematics, Springer-Verlag,Berlin, 1995, Reprint of 

the 1980 edition. 

[27] A.M.S., A.R.Humphries, Dynamical systems and 

numerical analysis. Camb

ridge University Press, 1998. 


